首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1714篇
  免费   276篇
  国内免费   214篇
化学   1852篇
晶体学   11篇
力学   10篇
综合类   27篇
数学   83篇
物理学   221篇
  2024年   4篇
  2023年   53篇
  2022年   60篇
  2021年   154篇
  2020年   148篇
  2019年   119篇
  2018年   125篇
  2017年   99篇
  2016年   126篇
  2015年   78篇
  2014年   116篇
  2013年   228篇
  2012年   98篇
  2011年   65篇
  2010年   80篇
  2009年   67篇
  2008年   88篇
  2007年   79篇
  2006年   76篇
  2005年   69篇
  2004年   52篇
  2003年   53篇
  2002年   33篇
  2001年   30篇
  2000年   14篇
  1999年   12篇
  1998年   14篇
  1997年   8篇
  1996年   10篇
  1995年   8篇
  1994年   6篇
  1993年   10篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有2204条查询结果,搜索用时 15 毫秒
11.
Based on recent examples and initiatives reported in the literature, this concept article discusses how chemistry can contribute to the circular economy approach in order to improve our current and future economical, societal, and environmental system. Through five proposed levels of contribution, chemists can take a significant part in this global approach via the consideration of green chemistry principles, the simplification of syntheses, the limitation of complex products preparation, the efficient utilization of resources but also the novel ways of waste valorization. A more systematic and generalized environmental and economic assessment from the lab-scale is also recommended. At last, chemists have to work even more collaboratively and in a multidisciplinary way, within chemistry and beyond.  相似文献   
12.
The bismuth loaded on fluorapatite (Bi2O3/FAp) proved to be an excellent catalyst for the synthesis of novel dihydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives via a three-component reaction involving the mixture of 1H-1,2,4-triazol-5-amine, ethyl cyanoacetate or ethyl acetoacetate, and different benzaldehydes in ethanol at room temperature. The catalyst material was characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, Fourier-transform infrared, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy techniques. The efficacy of Bi2O3/FAp as a heterogeneous catalyst was evaluated with the loading of different wt% of bismuth on FAp. The 2.5% bismuth on FAp performed extremely well as a catalyst with a high yield of products (92%–96%) in a short reaction time (25–35 min). The catalyst was recovered by simple filtration. It showed undiminished activity up to five runs. Simple work-up, room temperature reaction, short reaction time, high yields, no column chromatography, and good reusability of catalyst are the merits of the proposed protocol. In addition, this process offers 100% carbon efficiency and 98% atom economy with noteworthy fiscal and environmental benefits.  相似文献   
13.
To increase the profitability and sustainability of agricultural waste, a facile green approach was established to synthesize zinc oxide nanoparticles (ZnO NPs) using saffron leaf extract as a reducing and stabilizing agent. Structural characteristics of NPs were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and UV–Visible (UV–Vis) spectroscopy. Characterization results revealed that ZnO NPs is highly crystalline with a hexagonal wurtzite structure and spherical particles with diameter less than 50 nm, as confirmed by XRD and FESEM techniques. UV–Vis absorption spectra depicted an absorption peak at 370 nm, which confirms the formation of ZnO NPs. FTIR spectral analysis confirmed the presence of functional groups and metal oxygen groups. The biological activities of ZnO NPs were also investigated. The antibacterial effect of ZnO NPs was investigated against selected food pathogens (Salmonella Typhimurium, Listeria monocytogenes, and Enterococcus faecalis). The study results prove that the green synthesized ZnO NPs show enhanced antibacterial activity against S. Typhimurium when compared with other strains. A dose-dependent free radical scavenging activity was observed for ZnO NPs in both 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and fluorescence recovery after photobleaching (FRAP) assays. The ZnO NPs were evaluated for their photocatalytic activity during the degradation of methylene blue (MB) dye in aqueous solutions. The maximum removal of MB achieved was 64% with an initial ZnO NP concentration of 12 mg/mL under UV light. The present study revealed that the agricultural waste (saffron leaf) provides a simple and eco-friendly option to sustainably synthesize ZnO NPs for use as a photocatalyst. In addition, this is the first report on saffron leaf-mediated synthesis of ZnO NPs.  相似文献   
14.
In this work, a simple and green method is reported for the biosynthesis of Cu/bone nanocomposite using Cordyline fruticosa extract as a stabilizer and reductant. Animal bone was used as a natural support to prevent the accumulation of Cu nanoparticles. The catalytic activity of Cu/bone nanocomposite was assessed in the synthesis of 1‐substituted 1H‐1,2,3,4‐tetrazoles and reduction of various organic dyes, including 4‐nitrophenol (4‐NP), nigrosin (NS), congo red (CR) and methylene blue (MB). The best catalytic performance in the synthesis of 1‐substituted tetrazoles was achieved using 0.05 g of Cu/bone nanocomposite at 120°C. In addition, under optimal conditions, the absorption bands corresponding to 4‐NP, CR, NS and MB completely disappeared after about 6 min, 3 min, 50 s and 7 s, respectively. The biosynthesis protocol used in the preparation of Cu/bone nanocomposite offers a very attractive area for further research.  相似文献   
15.
In the present work, for the first time we have designed a novel approach for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles using reduced graphene oxide (rGO) decorated with Cu‐Ni bimetallic nanoparticles (NPs). In situ synthesis of Cu/Ni/rGO nanocomposite was performed by a cost efficient, surfactant‐free and environmentally benign method using Crataegus azarolus var. aronia L. leaf extract as a stabilizing and reducing agent. Phytochemicals present in the extract can be used to reduce Cu2+ and Ni2+ ions and GO to Cu NPs, Ni NPs and rGO, respectively. Analyses by means of FT‐IR, UV–Vis, EDS, TEM, FESEM, XRD and elemental mapping confirmed the Cu/Ni/rGO formation and also FT‐IR, NMR, and mass spectroscopy as well as elemental analysis were used to characterize the tetrazoles. The Cu/Ni/rGO nanocomposite showed the superior catalytic activity for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles within a short reaction time and high yields. Furthermore, this protocol eliminates the need to handle HN3.  相似文献   
16.
In this study, Co3O4 nanocatalysts were constructed in environmentally appropriate conditions using controlled, effective, and facile microwave method. The final nanostructures were characterized by SEM, XRD, and TEM analyses. The products had a small size distribution, homogeneous morphology, and crystallographic structures associated with the formation of Co3O4 nanostructures. Moreover, EDS mapping analysis confirmed the existence of Co and O elements in the final structure, and the magnetic properties of the samples were investigated by VSM. The application of this nanostructure in a catalytic process was further examined, and the results suggested that it could be used as a novel candidate for the synthesis of arylidene barbituric and Meldrum,s acid through Knoevenagel condensation of aldehydes by barbituric and Meldrum,s acid in aqueous media. The high yield of these nanocatalysts would be justified by the nature of the nanostructure as well as the experimental procedure developed in this study, which affected the physicochemical features of the products.  相似文献   
17.
ABSTRACT

Green Chemistry principles can be used to re-cast traditional Organic chemistry experiments into more guided-inquiry based experiments. Inquiry questions related to green chemistry principles and metrics have been incorporated into our laboratory for the development of more guided-inquiry based experiments. Re-casting traditional experiments provides time for guided-inquiry by allowing students to evaluate reaction conditions and wastefulness of reactions. This includes evaluating solvent choices, heating methods, use of renewal materials, and contemplating reactants and products impacts on human health and environment. Students examine the changes as it pertains to green chemistry, the success of the reaction and the potential impacts on the mechanism. Involving students in these discoveries rooted in a guiding question made the Organic experiments guided-inquiry. Students were surveyed about their exposure to green chemistry and guided-inquiry based labs. Examples of some of the re-casted experiments, excerpts from student reports, and student impressions of the theme are presented.  相似文献   
18.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
19.
In the present study, biosynthesis of CuO nanoparticles using a rapid, eco‐friendly, cost‐effective and efficient method has been reported employing aqueous Euphorbia maculata extract as mild, renewable and non‐toxic reducing and capping agents without adding any surfactants. The biogenic and green method has some benefits compared to conventional physical and chemical methods. It is simple, cheap and environmentally friendly. The biosynthesized CuO NP displayed a color change pattern (from sky blue to black) on preparation and presented its respective broad peak at 365 nm, which was analyzed by UV–Vis spectroscopy. Using the FT‐IR analysis, biomolecules in E. maculata extract which are responsible for bioreduction activity and synthesize of CuO NP, were identified. The XRD, EDX and FESEM results confirmed the successful synthesis of CuO nanoparticles of 18 nm sizes, with spherical and sponge crystal structure. The catalytic activity of biosynthesized CuO NPs was studied in C‐S cross‐coupling reaction. This method has the advantages of high yields, easy work‐up, and simple reusability. The recovered CuO NP can be reused four times without any considerable loss of its catalytic activity.  相似文献   
20.
The magnetic core of manganese ferrite (MnFe2O4) nanoparticles has a significant stability in comparison with ferrite (Fe3O4) nanoparticles. The unique supramolecular properties of β‐cyclodextrin (β‐CD), such as hydrophobic cavity, hydrophilic exterior and ‐OH functional groups, make it a good candidate for functionalization and catalytic application. So, a surface‐modified magnetic solid support with the Cu (II)‐β‐CD complex was prepared. The structure of nanoparticles was characterized by Fourier transform‐infrared spectroscopy, X‐ray powder diffraction, thermogravimetric analysis, vibrating‐sample magnetometry, inductively coupled plasma‐optical emission spectrometry and scanning electron microscope analyses. The catalytic activity of these nanoparticles was investigated in the synthesis of spiropyrans and high yields of desired products obtained under green media. Some advantages of this novel catalyst for this reaction are high yields, short reaction times, green solvent and conditions, easy workup procedure, negligible copper leaching, reusability without a significant diminish in catalytic efficiency, and simple separation of nanocatalyst by using an external magnet alongside the environmental compatibility and sustainability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号